广度优先遍历

广度优先搜索(也称宽度优先搜索,缩写BFS)是连通图的一种遍历策略。因为它的思想是从一个顶点V0V0开始,辐射状地优先遍历其周围较广的区域,因此得名。

一般可以用它做什么呢?一个最直观经典的例子就是走迷宫,我们从起点开始,找出到终点的最短路程,很多最短路径算法就是基于广度优先的思想成立的。

实现

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
type TreeNode struct {
	Val   int
	Left  *TreeNode
	Right *TreeNode
}

//bfs遍历二叉树过程
func BFS(root *TreeNode) []int {
	queue := make([]*TreeNode, 1, 1<<3)
	queue[0] = root
	ret := make([]int, 0, 1<<3)
	for len(queue) > 0 {
		size := len(queue)
		for i := 0; i < size; i++ {
			node := queue[i]
			ret = append(ret, node.Val)
			if node.Left != nil {
				queue = append(queue, node.Left)
			}
			if node.Right != nil {
				queue = append(queue, node.Right)
			}
		}
		queue = queue[size:]
	}
	return ret
}

应用

  1. 寻找非加权图(或者所有边权重相同)中任两点的最短路径
  2. 寻找其中一个连通分支中的所有节点(扩散性)
  3. bfs染色法判断是否为二分图

参考

  1. BFS——广度优先算法